6 Most Common Types of Laser Generators
Laser technology has entered people's lives from all aspects, but there are many types of laser generators, each with different wavelengths and different characteristics, so the fields of application are also different. I believe that most people feel a bit of a headache in the face of the complicated types of laser generators. Therefore, this article summarizes and explains the features and practical applications of various types of laser generators one by one.
According to different working media, laser generators are divided into six types: solid-state, gas, dye, Diode, fiber, and free electron laser generators. Among them, there are many subdivisions of solid-state and gas lasers. Except for free electron lasers, the basic working principles of various lasers are the same, including pump source, optical resonator and gain medium.
Solid State Laser Generator
In solid-state laser generators, light is generally used as the pump source, and the crystal or glass that can generate light is called working material. The material is composed of a matrix and an activated ion. The matrix material provides a suitable existence and working environment for the activated ion, and the activated ion completes the laser generation process. Commonly used active ions are mainly transition metal ions, such as chromium, cobalt, nickel and other ions and rare earth metal ions, such as neodymium ions. The mirrors coated with dielectric films are used as resonator mirrors, one of which is a full mirror and the other is a half mirror. When using different activated ions, different matrix materials and different wavelengths of light excitation, various lasers of different wavelengths will be emitted.
The laser wavelength output by the ruby laser generator is 694.3nm, and the photoelectric conversion rate is low, only 0.1%. However, its fluorescent life is long, which is conducive to energy storage, and it can output high pulse peak power. The laser generated by a ruby rod with a thickness of a pen core and a long finger can easily penetrate the iron sheet. Before the emergence of more efficient YAG laser systems, ruby laser systems were widely used in laser cutting and drilling. In addition, 694nm light is easily absorbed by melanin, so ruby lasers are also used in the treatment of pigmented lesions (skin spots).
Due to its crystal properties, the Ti:Sapphire laser generator has a wide tunable range (that is, the tunable wavelength range), and can output light with a wavelength of 660nm-1200nm as needed. Coupled with the maturity of frequency doubling technology (which can double the frequency of light, that is, halve the wavelength), the wavelength range can be extended to 330nm-600nm. Titanium sapphire laser systems are used in femtosecond spectroscopy, nonlinear optics research, generation of white light, generation of terahertz waves, etc., and also have applications in medical beauty.
YAG is the abbreviation of yttrium aluminum garnet, which is the most excellent laser crystal matrix at present. After being doped with neodymium (Nd), it can output 1064nm light, and the maximum continuous output power can reach 1000w. In the early days, an inert gas flash lamp was used as the pump source, but the flash lamp pump method has a wide spectral range, poor coincidence with the absorption spectrum of the gain medium, and a large thermal load, resulting in a low photoelectric conversion rate. So now using LD (Laser Diode) pumping, high efficiency, high power, and long life can be achieved. Nd:YAG laser generators can be used in the treatment of hemangiomas and inhibit tumor growth. However, the thermal damage to the tissue is non-selective. While coagulating the blood vessels of the tumor, the excess energy will also damage the surrounding normal tissue, and it is easy to leave scars after surgery. Therefore, Nd:YAG laser is mostly used in surgery, gynecology, ENT, and less in dermatology.
Yb: YAG, Ytterbium (Yb) is doped into YAG, which can output light of 1030nm. The pump wavelength of Yb:YAG is 941nm, which is very close to the output wavelength, which can achieve a pump quantum efficiency of 91.4%, and the heat generated by the pump is suppressed to within 10% (most of the input energy is converted into output the energy, a small part of which becomes heat, means that the conversion efficiency is very high), which is 25% to 30% of Nd:YAG. Yb:YAG has become one of the most attractive solid-state laser media, and LD-pumped high-power Yb:YAG solid-state laser generators have become a new research hotspot, and are regarded as one of the developmental high-efficiency, high-power solid-state laser generators main direction.
In addition to the above two, YAG can also be doped with holmium (Ho), erbium (Er), etc. Ho:YAG produces eye-safe 2097nm and 2091nm lasers, mainly for optical communication, radar and medical applications. Er:YAG outputs light of 2.9 μm, and the human body has a high absorption rate of this wavelength, which has great application potential for laser surgery and vascular surgery.
Gas Laser Generator
Gas laser generators are laser systems that use gas as a gain medium, generally pumping gas discharges. The types of gases include atomic gases (helium-neon, noble gas ion, and metal vapor), molecular gases (nitrogen and carbon dioxide), excimer gases, and are provided by chemical reactions.
The HeNe laser generator (HeNe) uses a mixture of 75% or more He and 15% or less Ne as the gain medium. Depending on the working environment, it can emit green (543.5nm), yellow (594.1nm), orange (612.0nm), red (632.8nm) and three types of near-infrared light (1152nm, 1523nm and 3391nm), of which red light (632.8nm) is the most commonly used. The beam output by the HeNe laser generator has a Gaussian distribution, and the beam quality is very stable. Although the power is not high, it has a good performance in the field of precision measurement.
The common noble gas laser generators are argon ions (Ar+) and krypton ions (Kr+). Its energy conversion rate can reach up to 0.6%, and it can continuously and stably output power of 30-50w for a long time, and its life span exceeds 1000h. Mainly used in laser display, Raman spectroscopy, holography, nonlinear optics and other research fields, as well as medical diagnosis, printing color separation, metrology material processing and information processing.
Metal vapor laser generators take copper vapor as an example. The copper vapor laser generator mainly outputs green light (510.5nm) and yellow light (578.2nm), which can reach an average power of 100w and a peak power of 100kw. Its main application area is the pump source of dye laser generators. In addition, it can also be used for high-speed flash photography, large-screen projection TV and material processing.
The nitrogen molecular laser generator uses nitrogen as the gain medium, which can emit ultraviolet light of 337.1 nm, 357.7 nm and 315.9 nm, and the peak power can reach 45kw. It can be used as a pump light source for organic dye laser generators, and is also widely used in laser separation of isotopes, fluorescence diagnosis, ultra-high-speed photography, pollution detection, medical and health care, and agricultural breeding. Because its short wavelength is easier to focus to obtain a small spot, it can also be used to process sub-micron components.
The gain medium used in the CO2 laser generator is carbon dioxide mixed with helium and nitrogen, which can output far-infrared light centered at 9.6 μm and 10.6 μm wavelengths. The generator has a high energy conversion rate, the output power can range from several watts to tens of thousands of watts, and the extremely high beam quality makes the CO2 laser generator widely used in material processing, scientific research, national defense and medicine. You will meet different CO2 laser cutters and laser engravers for engraving & cutting wood, MDF, plywood, fabric, leather, glass, plastic, and acrylic in your daily life and business.
Excimers are unstable molecules that are filled with mixtures of different noble gases and halogen gases in the resonator to generate lasers of different wavelengths. The excitation is usually achieved by relativistic electron beams (energy greater than 200 keV) or by transverse rapid pulse discharges. When the unstable molecular bonds of the excited state excimer are broken and dissociated into ground state atoms, the energy of the excited state is released in the form of laser radiation. It is widely used in medical, optical communication, semiconductor display, remote sensing, laser weapons and other fields.
Chemical laser generator is a special type of gas laser system that uses the energy released by chemical reaction to realize particle number inversion. Most of them work in molecular transition mode, and the typical wavelength range is in the near-infrared to mid-infrared spectral region. The most important ones are hydrogen fluoride (HF) and deuterium fluoride (DF) devices. The former can output more than 15 spectral lines between 2.6 and 3.3 microns; the latter has about 25 spectral lines between 3.5 and 4.2 microns. Both devices are currently capable of multi-megawatt outputs. Because of its huge energy, it is generally used in nuclear engineering and military fields.
Dye Laser Generator
Dye laser generators use an organic dye as the laser medium, usually a liquid solution. Dye laser generators can generally be used over a wider range of wavelengths than gaseous and solid-state laser media. Their wide bandwidth makes them particularly suitable for tunable and pulsed laser generators. However, due to its short medium life and limited output power, it is basically replaced by wavelength-tunable solid-state lasers such as titanium sapphire.
Diode Laser Generator
Diode laser generator is a laser system that uses semiconductor materials as the working substance. There are three excitation modes: electric injection, electron beam excitation and optical pumping. Small size, low price, high efficiency, long service life, low power consumption, can be used in electronic information, laser printing, laser pointer, optical communication, laser TV, small laser projector, electronic information, integrated optics and other fields.
Fiber Laser Generator
Fiber laser generator refers to a type of laser system that uses rare earth element-doped glass fiber as a gain medium. It is widely used in metal and non-metal printing, marking, engraving, drilling, cutting, cleaning, welding (brazing, water quenching, cladding and deep welding), military, defense and security, medical equipment, large infrastructure, and as a pump for other laser sources. You will meet fiber laser engravers for personalized texts and patterns, fiber laser cutters for metal fabrication, fiber laser cleaning machines for rust removal, paint stripping, and coating removal, fiber laser welding machines for metal joints in your life.
Free Electron Laser Generator
Free electron laser generator is a new type of high-power coherent radiation source different from traditional laser generator. It does not need gas, liquid or solid as working material, but directly converts the kinetic energy of high-energy electron beam into coherent radiation energy. Therefore, it can also be considered that the working substance of the free-electron laser generator is free electrons. It has a series of excellent characteristics such as high power, high efficiency, wide range of wavelength tuning and time structure of ultra-short pulses. Except for it, there is no laser generator that can have these features at the same time. It has considerable prospects in the fields of physics research, laser weapons, laser fusion, photochemistry, and optical communications.